a^2+19^2=34^2

Simple and best practice solution for a^2+19^2=34^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+19^2=34^2 equation:



a^2+19^2=34^2
We move all terms to the left:
a^2+19^2-(34^2)=0
We add all the numbers together, and all the variables
a^2-795=0
a = 1; b = 0; c = -795;
Δ = b2-4ac
Δ = 02-4·1·(-795)
Δ = 3180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3180}=\sqrt{4*795}=\sqrt{4}*\sqrt{795}=2\sqrt{795}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{795}}{2*1}=\frac{0-2\sqrt{795}}{2} =-\frac{2\sqrt{795}}{2} =-\sqrt{795} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{795}}{2*1}=\frac{0+2\sqrt{795}}{2} =\frac{2\sqrt{795}}{2} =\sqrt{795} $

See similar equations:

| (7x-1)°=(3x-9)° | | 7x-21=91 | | 1=x-(-20) | | 5x-21=60 | | 5x(7x)-1715=0 | | 10m=5m | | t-920/13=4 | | 115=-y+248 | | a/8+2=15 | | h10=3 | | m+132=2575 | | 5x(7x)=1715 | | (Y+5)-(y+4)=4y | | -19+47-2x=3x-1 | | 5(10-5x)+4x=8 | | 4.5w-18=27 | | 1*(3+n)=9.6 | | 9(x+4)+2=12 | | 20x+5360=x | | q+(0.6*3)=7.8 | | c-150=1500 | | (4.8+0.5)-s=0.3 | | 11+3r=12 | | 2x-284=1356 | | 6m+14=56 | | -9/8t=3/4 | | 0=4-2y | | 9(w+55)=963 | | 15x+2+102+6x+88=360 | | 8x-4x+2=2(x+6) | | 9a-15=2a-8 | | m-47/29=20 |

Equations solver categories